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Overview of Information Theory

● Relatively new discipline
○ “A Mathematical Theory of Communication” (Shannon 1948)

● Broadly speaking, deals with:
○ Transmission of data through mechanisms of encoding (compression), 

decoding, mathematical/probabilistic analysis
● DOES NOT DEAL WITH:

○ SEMANTICS

● We’ll go over the origins of information theory
○ Lots of Shannon, 1948
○ A little Von Neumann





Shannon-“A Mathematical Theory of Comm..”
● A monster
● Shannon idea of information:

○ Semantics are irrelevant regarding communication -- “The significant aspect is that the actual 
message is one selected from a set of possible messages” (MTC 1)

■ Idea: increased information comes from a message’s not being another potential 
message

● Information can take on many forms
○ Sequence of characters (discrete)
○ f(t)
○ f(t,x1,...,xn)
○ f(t), g(t), …
○ other combinations of above



Shannon intro
● Shannon def. of information immediately gives way to measure of information:

○ Naive metric of information = log2M bits where M is the size of the set of possible 
messages/symbols (in discrete case)

○ This set can be: letters, words, roman numerals, etc. 

○ Example for arabic numerals: log210 = 3.32 bits, so each base 10 number can be expressed in 
3.32 bits

● This will be refined soon
● We’ll be focusing on the discrete case -> don’t worry about functions and 

integrals and stuff



Channel Capacity 
● Maximum rate of bits/second transmittable by channel
● C= (lim T->infinity)(log(N(T))/T)

○ where N(T) is the number of potential signals of duration T
○ From now on, baseless log always means log base 2



Probabilistic Information Sources
Intuition- in natural English, the letter “e” occurs more frequently than the letter “q”

In the same way, the word “and” is more frequent than “vociferous”

You can assign each element of the set of possibly transmitted symbols a 
probability

This generates a probability mass function which characterizes the nature of the 
information source -- so the information source is a random variable X

After this Shannon describes a lot of conditional probability and Markov modeling 
of information sources in depth- this we will skip



Background to Entropy
Now our source is a discrete RV X. 

We want a metric such that we can measure the rate of information produced from 
this random process. 

Say p(X = xn) = an , and our new metric is H(X)

H(X) is the negative sum over all possible values of X of pilog(pi)

This is called “entropy”, due to a similar mathematical/statistical formulation as 
thermodynamic entropy

Unit of H(X): bit/symbol



H(X) of a binary generator



Intuition for Entropy
It’s exactly like thermodynamic entropy: a measure of certainty/order

Information gleaned from a symbol is related to its probability of being any symbol

Shannon’s 3 intuitive conditions when defining entropy:

H(X) where X takes on a pmf {p1,p2,...,pn}

1. H is continuous in the pi
2. If all pi are evenly distributed on X, H increases with n
3. If a choice denoted pi is separated into 2 sub-choices, the total H is 

representable as a weighted sum of the individual values of H



Joint entropy
Let p(i,j) be the joint PMF for 2 R.V.s X and Y

Then

and



Other relations to probability
Conditional Probability -> Conditional Entropy

Old notation: H(Y given X) -> HX(Y)

Complete relational inequality:



Entropy of a Source
If each letter in our string is generated by a random variable on a set of letters, 
successive letters are not necessarily independent AND not necessarily generated 
by the same R.V.

If they aren’t independent, you have entropy Hi for each state

Then your expected entropy is

negative sum over i of PiHi

where P is the probability of the specific random variable generating in 
the sequence, and H is the entropy of the random variable

Calculable indirectly using laws of large numbers, limiting processes



Redundancy
Relative entropy = H/(max H using same # of symbols)

Redundancy = 1-R.E.

Redundancy takes values on [0,1]

Measures the percent of symbols which could be taken out of the signal without 
losing information

Hard bound on lossless compression under this model of information



Fundamental Theorem for Noiseless Channels
More on the hard bound:

Let the source have an entropy of H(bits/symbol) and the channel have a capacity 
of C (bits/second)

Then it is possible to encode (compress) the source so as to transmit at C/H 
symbols/second



Example
A source chooses from {A, B, C, D} independently w/ p(A)= ½, p(B) = ¼, p(C) and 
p(D) = ⅛ 

H= 7/4 bits/symbol

Current information density= log(4) = 2 bits

Code: A=0, B=10, C= 110, D= 111

Then average bits in encoding N symbols will be 7/4 bits/symbol

(½*1+¼*2+⅛*3+⅛*3)=7/4 bits, as opposed to 2 bits



Von Neumann Entropy (quantum)
If a quantum system is described by a matrix ρ on a m-dimensional complex 
Hilbert space Cn, its Von Neumann entropy (S) is

S = -trace(ρlnρ)

then if ρ is decomposed to eigenvectors λi, S is rewritable as

S = negative sum over all i (λilnλi)

which is analogous to Shannon entropy

The value of S changes with change of basis on Cn!



Quantum Compression Scheme
Classical compression scheme: invertible function s.t.

f: {0,1}n -> {0,1}n

Quantum: unitary change-of-basis transformation

QC: C2n -> C2n



In Conclusion
Entropy is a measure of uncertainty: the more uncertain you are that a symbol will 
be generated, the more information that symbol carries

Under Shannon theory, channel capacity and information source entropy interact 
to let you know how fast you can transmit information w/ compression

Shannon theory is applicable to quantum computing, but shifts everything from 
sets of symbols to Hilbert spaces

There is far more information in the field: to name 3 essential things, noisy signals, 
continuous signals, and Kolmogorov complexity 


